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Rapid changes in environmental osmolarity are a natural

aspect of microbial lifestyles. The change in turgor pressure

resulting from an osmotic shock alters the mechanical forces

within the cell envelope, and can impact cell growth across

a range of timescales, through a variety of mechanical

mechanisms. Here, we first summarize measurements of turgor

pressure in various organisms. We then review how the

combination of microfluidic flow cells and quantitative image

analysis has driven discovery of the diverse ways in which

turgor pressure mechanically regulates bacterial growth,

independent of the effect of cytoplasmic crowding. In Gram-

positive, rod-shaped bacteria, reductions in turgor pressure

cause decreased growth rate. Moreover, a hypoosmotic shock,

which increases turgor pressure and membrane tension, leads

to transient inhibition of cell-wall growth via electrical

depolarization. By contrast, Gram-negative Escherichia coli is

remarkably insensitive to changes in turgor. We discuss the

extent to which turgor pressure impacts processes such as

cell division that alter cell shape, in particular that turgor

facilitates millisecond-scale daughter-cell separation in many

Actinobacteria and eukaryotic fission yeast. This diverse set of

responses showcases the potential for using osmotic shocks

to interrogate how mechanical perturbations affect cellular

processes.
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Introduction
In walled organisms such as bacteria, cell volume and

surface area are defined by the size and shape of the cell

envelope, including the membrane(s) and the cell wall

[1]. Therefore, expansion of the cell envelope is the
Current Opinion in Microbiology 2018, 42:62–70 
ultimate process that determines the rate of cell growth.

The envelope is inflated by turgor pressure, the intracel-

lular hydrostatic pressure that results from the osmotic

potential (concentration differential) across the mem-

brane, which is balanced by mechanical stress in the cell

envelope (Figure 1a). Since water is the primary cytosolic

component, and bacterial cells do not have active water

transporters, cells rely on osmosis for water import during

cell growth. Indeed, the idea that swelling due to osmosis

is fundamental to cell growth is centuries old [2]. How-

ever, recent progress has aimed to understand deeper

functional relationships between water activity and cell

growth. These studies demonstrated that, in many cases,

osmotic potential is not simply required for water influx,

but is required to generate turgor pressure that is used as a

mechanical driver of cell deformation during growth or as

a feedback signal regulating cell growth.

In principle, turgor pressure could regulate growth

directly via a variety of mechanisms; evidence from plants

provides important starting points for microbial research.

Classic experiments by Green and others demonstrated

that turgor pressure drives controlled mechanical expan-

sion of the plant cell wall during cell growth in a process

equivalent to plastic deformation [3]. In plants, hydrolysis

of the cell wall via the expansin enzymes weakens the cell

wall and thereby leads to turgor-dependent expansion [4];

similar processes have been proposed to be at play in

microbes [5]. The ability to insert cell-wall precursors

could be dependent on the physical stretching of the wall,

which has been hypothesized to affect the ability of the

Escherichia coli outer membrane lipoproteins LpoA/B to

activate their wall synthase partners PBP1A/B [6,7].

Mechanical stresses in the cell envelope could also affect

transport of nutrients, and the opening of channels could

lead to loss of proteins or small molecules important for

growth. When hyperosmotic shock causes plasmolysis

(separation of the cytoplasmic membrane from the cell

wall; Figure 1b), any coupling between the insertion of

new material into the cell wall and membrane could

be disrupted since stretching would be differentially

affected in the two layers (as their spring constants are

likely to be different due to their material properties). In

sum, turgor pressure has myriad opportunities to affect

the rate of growth through biomass, cell-wall, and/or

membrane synthesis and through mechanical stretching,

and osmotic shock represents a unique tool to probe

coupling among these processes. Nonetheless, it is also

possible that the biochemistry of growth is insulated

from changes in turgor. Here, we review and analyze

the effects of turgor pressure on the growth and division

rates of several bacterial species in order to elucidate
www.sciencedirect.com
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Large turgor pressures inflate the cytoplasm of walled organisms. (a) Outward expansion of the cytoplasm due to turgor pressure P is balanced

by mechanical resistance from the cell envelope, including the cell wall. Cint and Cext are the internal and external concentrations, respectively,

that determine P through the Morse equation P = RT(Cint � Cext). (b) Bacterial cells often transition between environments with large differences in

osmolarity, such as the exit of enteric bacteria from the gut into fresh water. Hypoosmotic shock due to this sudden decrease in external

osmolarity causes water influx and cell swelling. By contrast, hyperosmotic shock due to a sudden increase in external osmolarity causes water

outflux and plasmolysis of the cytoplasm (separation of the membrane from the cell wall). (c) Estimates of turgor pressure in various species

[17,18,20,22��] (thickness of green contours qualitatively represents cell-wall thickness), as compared with a car tire.
fundamental principles of the mechanics of bacterial

growth.

The significance, magnitude, and
measurement of turgor pressure
Bacterial species often inhabit and transition between

environments with dramatically different osmolarities:

obvious examples are the soil before and after a rain-

storm, and the exit from the gut to fresh water regularly

experienced by enteric bacteria. In both cases, cells

experience a hypoosmotic shock in which the external

environment becomes more dilute, causing water to flow

into and swell the cell to equilibrate internal and external

concentrations (Figure 1b). Bacterial cells express an

array of osmoregulatory proteins that regulate turgor,

including osmosensors that produce or import osmolytes

used specifically for turgor homeostasis [8��] and

mechanosensitive channels that act as release valves

during hypoosmotic shock [9]. During the response to

an osmotic shock from a change in the concentration of a

compound to which the membrane is not completely

permeable, water flux occurs within milliseconds [10,11],

while osmolyte transport requires minutes [12]. The

adaptation period can last several hours depending on

the osmolyte and growth conditions [13], and recovery

from hypoosmotic shock can involve shrinking of the cell

to below the pre-shock volume in a mechanosensitive

channel-dependent manner [14�]. Thus, the connections

between turgor pressure and growth are a major compo-

nent of osmoadaptation.
www.sciencedirect.com 
Turgor pressure (P) results in cytoplasmic swelling, and

energy is required to overcome turgor and to compress the

cytoplasm by a volume DV. The higher the concentration

difference between the outside and inside of the cell, the

more work is necessary. Turgor pressure is defined by the

ideal gas law-like Morse equation, P = RT(Cint � Cext),

where R is the gas constant, T is the temperature, and Cint/

ext are the internal/external osmolarity, respectively

(Figure 1a). One atmosphere of pressure is equivalent

to �100,000 N/m2, or 14.7 pounds per square inch (psi);

this value can be compared to the pressure in a car tire,

which is generally inflated to �35 psi (Figure 1c). Pres-

sure has the same units (force per unit area) as Young’s

modulus, the parameter used to measure the stiffness of a

three-dimensional material (analogous to the spring

constant k for a Hookean spring where F = kx). One

way to measure whether turgor pressure is ‘large’ is to

compare the work required to reduce the volume by

an amount DV against turgor pressure, W = PDV, to ther-

mal and biochemical reaction energy scales. For

P = 1 atm = 0.1 pN/nm2, the work required to displace

1 nm3 of volume is W = 0.1 pN nm, which is 2.4% of

the thermal energy kBT = 4.2 pN nm. Thus, thermal fluc-

tuations can induce a change in volume of 42 nm3, and

hydrolysis of a single ATP (which is equivalent to

�20 kBT) can induce a volume reduction of

�800 nm3. These volumes are miniscule fractions of

the cellular volume of a bacterium, which is on the scale

of 109 nm3, demonstrating that sustaining turgor pressure

requires a large energy investment. As we will discuss,

many species make the most of this investment by
Current Opinion in Microbiology 2018, 42:62–70
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exploiting turgor pressure to regulate cell growth and

division.

Plant cells are sufficiently large for turgor to be measured

directly from the ability of the cell to compress gas

trapped in the closed end of a capillary, the open end

of which is in the cell vacuole [3], yielding measurements

of a few atmospheres [3,15]. Such measurements are not

currently possible in bacteria due to their small size;

nevertheless, several clever methods have been devised

to indirectly estimate turgor using the collapse of gas

vesicles [16], water content measurements [17], and

atomic force microscopy [18]. For the Gram-negative

(thin-walled, �2–4 nm [19]) E. coli, turgor pressure has

been estimated at �0.3–3 atm [17,18] depending on

measurement technique and on medium [17], in approxi-

mate agreement with another Gram-negative species,
Figure 2
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for growth inhibition. Modified from [27��]. (d) Feedback in which membrane

ensures balanced synthesis of the layers of the cell envelope (green mesh r
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Ancylobacter aquaticus [16]. By contrast, turgor in the

Gram-positive (thick-walled, �30 nm [5]) Bacillus subtilis
was estimated at 10 atm [20], while the fission yeast

Schizosaccharomyces pombe has a thick cell wall (hundreds

of nm [21]) and turgor pressure �15 atm [22��]. While it is

tempting to speculate about the connections among tur-

gor, wall thickness, and phylogenetic relatedness, we

currently only have measurements in these few organisms

from which to extrapolate (Figure 1c).

The role of turgor pressure in regulating
growth rate
Almost a century ago, quantitative studies by Heinrich

Walter showed that the size of a Bacillus mycoides colony

was inversely proportional to the osmolarity of the surface

on which it was grown (Figure 2a) [23]. One possible

interpretation of this finding is that, based on the Morse
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-positive bacteria by coupling electrical depolarization to cell-wall

tension, and hence inversely proportional to external osmolarity.

 hypoosmotic shock (arrow) induces cell swelling (green rectangles)

s of B. subtilis). This response is followed by an overshoot in elongation

, which finally settles back to the original growth rate (purple rectangle

slows wall expansion (i), demonstrating that growth rate is turgor

epolarization alone slows the motion of the MreB homolog Mbl (iii) and

n (v), demonstrating that increased membrane tension is responsible

 tension and cell-wall stress compete to regulate cell-wall growth rate

epresents cell wall, blue represents membrane).
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equation, increasing Cext leads to a decrease in turgor

pressure, and hence growth rate would be directly pro-

portional to P. However, such an argument ignores the

fact that after hours or days, any number of transcrip-

tional, translational, and structural changes could occur in

response to osmotic shifts. To distinguish between tur-

gor-mediated effects and indirect, pressure-independent

effects of osmolarity changes, a microfluidic flow cell

can be used to rapidly change osmolarity  while quan-

tifying instantaneous elongation rate via single-cell

imaging [24��].

B. subtilis is a rod-shaped, Gram-positive bacterium with a

thick (�30 nm) cell wall [25] that ceases growth upon a

large increase in extracellular osmolarity [26]. A single

hyperosmotic shock reduced B. subtilis growth rate for

tens of minutes [27��], and this reduced growth rate was

well below the steady-state growth rate in the higher-

osmolarity medium [27��]. This observation suggested

that the reduction in turgor pressure, and not the increase

in external osmolarity per se, was the critical factor

determining growth rate in this bacterium: turgor pressure

may be driving plastic deformation of the cell wall during

cell growth, as for plant cells. Interestingly, after a short

period of cell swelling, a hypoosmotic shock also reduced

B. subtilis growth rate, albeit for a shorter amount of time

(�1–2 min; Figure 2b) [27��]. The same behavior

occurred in Listeria monocytogenes and Clostridium perfrin-
gens [27��], suggesting that this behavior may be con-

served in Gram-positive rods. During the period of inhi-

bition, the motion of the MreB homolog Mbl, a reporter of

cell-wall synthesis [28,29], also halted [27��]. The behav-

ior of B. subtilis cells under hypoosmotic shocks of differ-

ent magnitudes agreed quantitatively with a model in

which the increase in membrane tension induces growth

arrest [27��]. In support of this model, applying a hyper-

osmotic shock to reduce membrane tension before

hypoosmotic shock relieved growth arrest in B. subtilis
[27��].

How is hypoosmotic shock, which mechanically induces

an increase in membrane tension and cell-wall stress,

transduced into the biochemical response of growth

arrest? Dissipation of the membrane potential with the

proton ionophore carbonyl cyanide m-chlorophenyl

hydrazine (CCCP) resulted in rapid delocalization of

MreB in B. subtilis [30], and also affected membrane

organization [31��]. Intriguingly, hypoosmotic shock also

electrically depolarized B. subtilis cells, and depolarization

using the proton ionophore 2,4-dinitrophenol slowed the

motion of Mbl and arrested growth, independent of any

osmotic shock (Figure 2c) [27��]. Thus, turgor pressure is

integrated with cell-wall expansion in an elegant manner

by which membrane tension regulates wall synthesis via

the membrane electrical potential. This homeostatic

mechanism dictates that growth can occur only when

membrane tension and cell-wall stress are in optimal
www.sciencedirect.com 
ranges, ensuring balanced syntheses of the membrane

and cell wall (Figure 2d).

E. coli maintains cell-wall insertion for several
minutes after hyperosmotic shock
In contrast to B. subtilis [27��], the growth rate of E. coli
cells was initially unaffected by a single hyperosmotic

shock, remaining higher than the steady-state growth rate

in the higher-osmolarity medium for tens of minutes

[24��]. To determine the extent to which turgor pressure

affects growth rate in this organism, the osmolarity of the

medium was varied periodically on the minute time scale

using a microfluidic flow cell. During these oscillatory

shocks, the widths of cells (which would normally be

constant [32]), oscillated along with the osmolarity [24��],
reflecting switches in turgor pressure that did not adapt on

the �5 min time scale. Although hyperosmotic shock-

induced plasmolysis caused apparently slower cell elon-

gation, cells nevertheless exhibited a ‘stored growth’

behavior: upon reestablishment of turgor, they expanded

to the length that they would have attained without the

osmotic shocks (Figure 3a) [24��]. During periods of low

turgor pressure, motion of the bacterial actin homolog

MreB, a signature of the rate and location of cell-wall

synthesis [33,34], continued unabated (Figure 3b) [24��].
Thus, cell-wall synthesis in E. coli is surprisingly robust to

turgor fluctuations, despite the decrease in steady-state

growth that occurs on longer time scales in response to

increased osmolarity [24��,35]. Measurements of cell vol-

ume as a function of the osmolarity of the growth medium

also indicated that turgor does not directly control growth

rate [36�]. On the other hand, a recent study showed that

mechanical strain sensing could, in principle, account for

cell-shape recovery in cells forced into a bent shape [37],

and sufficiently large compressive forces slowed growth

rate [38�]. How the intrinsic couplings among turgor,

mechanical strain and stress, and cell geometry ultimately

affect cell shape and growth remains to be fully

understood.

The role of turgor pressure in cell separation
For a bacterial cell with size w, the stress s (force per unit

area) in the wall can be approximated as Pw/d, where d is

the envelope thickness. For a rod-shaped cell with

P = 1 atm = 0.1 MPa, w = 1 mm, and d = 10 nm, s is

approximately 10 MPa. Estimates of the stiffness

(Young’s modulus) for bacterial cell walls mostly lie in

the range of 10–100 MPa [39,40], indicating that stretch-

ing of the envelope is 10–100% if the envelope behaves as

a linear elastic material (as has been observed for B.
subtilis [27��]). In addition to stretching, turgor stresses

can drive fracture (material breakage) or plastic deforma-

tion (permanent change without fracture) in the envelope

during growth.

In E. coli, cell constriction and separation occur concur-

rently [41], while in many Gram-positive bacteria,
Current Opinion in Microbiology 2018, 42:62–70
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Figure 3
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E. coli cell-wall growth rate is not dependent on turgor. (a) Trace of

mean length changes after scaling to an initial 3-mm length of a

population of E. coli cells during oscillatory osmotic shocks. Cells

exhibit ‘stored growth’: despite the apparent slower growth rate at

lower turgor (compare orange to red curve), upon turgor

reestablishment with hypoosmotic shock, cells expand to the length

that they would have attained without the osmotic shocks (modified

from [24��]). Green and blue rectangles represent intervals of growth in

LB + 100 mM and LB + 0 mM sorbitol, respectively. (b) The speed of

the bacterial actin homolog MreB (blue curve; shading is �1 standard

deviation), a signature of the rate and location of cell-wall synthesis

[33,34], averaged over several osmotic shock cycles with a period of

180 s, is the same during low (green rectangle) and high (blue

rectangle) turgor (modified from [24��]).
construction of a septal wall by the division machinery to

separate the two daughter cells precedes cell separation

[25]. In the round, Gram-positive bacterium Staphylococ-
cus aureus, daughter-cell separation occurs incredibly

quickly, within a millisecond (Figure 4a) [42��,43��], in

a process that relies on mechanical fracture of the cell

wall. The dependence on turgor-generated stresses was

demonstrated by showing that cells undergoing oscil-

latory osmotic-shock cycles synchronized separation

events with the hypoosmotic and hyperosmotic shocks

(Figure 4b), as these were moments when turgor pressure
Current Opinion in Microbiology 2018, 42:62–70 
(and hence stress in the cell wall) suddenly increased and

decreased, respectively [42��]. This ultrafast cell separa-

tion has since been shown to occur in several Actinobac-

teria (Figure 4c) [44�], as well as in the fission yeast S.
pombe (Figure 4c) [22��]. It remains to be seen whether

turgor pressure plays a role in other large morphological

changes, for instance by creating envelope defects that

lead to the formation of branches in species that form

hyphae [45,46].

The role of turgor pressure in cell constriction
While turgor pressure can drive growth (as in B. subtilis)
and cell separation, it may inhibit processes, such as cell

division, that involve inward deformations of the cell

envelope. In fission yeast, decreasing turgor pressure in

adaptation-deficient cells by adding osmolytes to the

growth medium increased the cleavage rate during cell

division (Figure 4d) [47], suggesting that the inward force

generated by the cytokinetic ring is resisted by outward

forces due to turgor pressure. It is unknown whether this

scenario occurs in bacteria as well, although in general,

the inward construction of the cell wall during constric-

tion faces resistance from turgor if the volume of the

cell is otherwise unchanging. Is turgor a major roadblock

to division progression? A back-of-the-envelope esti-

mate reveals that a single ATP (�20 kBT) can induce a

volume change of �800 nm3, equivalent to the size of

a polymer of the key division protein FtsZ that is

5 nm � 5 nm � 32 nm (approximately 6–7 subunits

long); this estimate ignores the energetic contributions

of membrane bending, which will depend heavily on the

local composition of the membrane. An FtsZ dimer has

been shown to undergo GTP hydrolysis-induced bending

[48] that can generate 10–20 kBT of energy [49], suggest-

ing that FtsZ polymers can bend membranes even against

turgor pressure, although it remains unclear whether

FtsZ-related constrictive forces are important for cell

division. Regardless, constriction must be reinforced by

cell-wall synthesis [50,51], which is the rate-limiting step

in division [52�]. This requirement suggests the potential

for interplay between septal cell-wall synthesis and tur-

gor, although such a connection has yet to be explored.

Discussion
Clearly the role of turgor pressure in microbial growth

varies across species, and we have only scratched the

surface of phenomenology. As a start, it would be infor-

mative to pin down whether the response to changes in

turgor is conserved phylogenetically, similar to the anal-

ysis of ultrafast separation that revealed conservation

across Actinobacteria [44�]. While growth inhibition

induced by hypoosmotic shock may be widespread

among rod-shaped Gram-positive bacteria [27��], it

remains to be seen whether the slowdown in growth is

generally mediated by membrane depolarization. More-

over, it will be intriguing to probe the extent to which

non-turgor-related mechanical perturbations also regulate
www.sciencedirect.com
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Figure 4
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Turgor-dependent ultrafast separation of daughter cells. (a) Daughter-cell separation (yellow arrowhead) in the round, Gram-positive bacterium S.

aureus occurs within a millisecond (modified from [42��]). (b) During oscillatory osmotic shocks with sorbitol, separation events occur more often

during hypoosmotic shocks, corresponding to increases in turgor, than during hyperosmotic shocks (modified from [42��]). (c) Ultrafast daughter-

cell separation also occurs in several Actinobacteria (modified from [44�]) and in the fission yeast S. pombe (modified from [22��]). The images of

bacteria show daughter cells snapping into a kink (arrowheads) within a single 5-min frame. S. pombe images display the rapid curving of the

septum (arrowhead) 10 ms after the left daughter cell was laser ablated (asterisk). (d) In osmoadaptation-deficient S. pombe gpd1D cells, the

actomyosin contractile ring (marked by rlc1-GFP) progresses more rapidly when sorbitol is added to the medium, demonstrating that ring

contraction is inhibited by turgor pressure.
growth through membrane electrical potential. Finally,

the molecular sensors that transduce the mechanical

effects of turgor fluctuations are as yet undiscovered.

A major open question is the response of other enteric

bacteria; most of these species naturally face rapid
www.sciencedirect.com 
transitions from highly concentrated environments like

the gut to fresh water. Because most gut commensals

prefer anaerobic environments, probing their response

requires imaging in conditions without oxygen. Differen-

tial responses to osmotic changes may lead to reconfigura-

tion of the microbiota, both spatially and compositionally,
Current Opinion in Microbiology 2018, 42:62–70
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which could have important impacts on the response of

host and microbiota to osmotic diarrhea.

The turgor insensitivity of E. coli growth presents a stark

contrast to the use of turgor for regulating growth and cell

separation in B. subtilis and S. aureus, respectively. Do

Gram-negative bacteria closely related to E. coli, such as

Salmonella, similarly store growth during turgor oscilla-

tions? For that matter, how general is the response of E.
coli? It is unknown whether stored growth occurs in

different media, and whether stored growth is a general

response of all E. coli strains, particularly pathogenic

strains that may have different osmotic requirements

for growth than commensals due to the lifestyles for

which they have evolved. Given that E. coli MG1655

cells can continue to insert cell-wall material at the same

rate after hyperosmotic shock in LB [24��], one would

expect to generally detect stored growth unless rapid

negative feedback stops precursor synthesis, or unless

the structure of the cell wall in certain strains or environ-

ments precludes insertion of the precursors.

Changes in water activity coupled to fluctuations in turgor

pressure can also affect growth rate indirectly. Given the

change in water content, it is possible (perhaps likely) that

intracellular density generally changes during osmotic

shocks, as has been shown for E. coli [53]. Since hyper-

osmotic shocks cause changes to both the diffusion of

cytoplasmic proteins [54] and cell shape, it stands to

reason that proteins involved in a reaction-diffusion

mechanism would have altered patterning. The Min

system in E. coli, which utilizes a Turing pattern

[55,56] to generate pole-to-pole oscillations that result

in placement of the division site at midcell [57,58], may

be altered by osmotic shock in such a manner as to

relocalize or even completely inhibit the division machin-

ery. Perhaps turgor fluctuations caused by repeated

osmotic shocks can alter the morphology of certain

microbes by perturbing the localization of the wall-syn-

thesis machinery. Beyond cell shape and growth, myriad

other cellular processes, such as DNA organization,

metabolism, membrane transport, and the state of the

cytoplasm itself [59] could be dramatically affected by

osmotic shocks; these are fertile grounds for discovery in

both basic and applied research.

Extrapolating our knowledge about turgor-dependent

regulation of bacterial growth to walled eukaryotes, and

vice versa, may yield exciting new insights. Many hypoth-

eses for how bacteria respond to turgor shifts have been

based on existing theories in plants, for which it is well

accepted that turgor drives growth [60]. However, it is

now clear that the role of turgor pressure in regulating

bacterial growth can be simple or complex, depending on

the organism. Many more species must be studied to

build a comprehensive picture of how turgor factors into

growth. Future ‘shocking’ discoveries promise to shed
Current Opinion in Microbiology 2018, 42:62–70 
light on the fascinating evolutionary possibility that wall

thickness, turgor pressure, and the mechanism of cell-wall

expansion (pressure-driven vs. non-pressure-driven) co-

evolved across the tree of life.
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