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Abstract Lateral partitioning of proteins and lipids shapes membrane function. In model 
membranes, partitioning can be influenced both by bilayer- intrinsic factors like molecular composi-
tion and by bilayer- extrinsic factors such as interactions with other membranes and solid supports. 
While cellular membranes can departition in response to bilayer- intrinsic or -extrinsic disruptions, the 
mechanisms by which they partition de novo are largely unknown. The plasma membrane of Myco-
bacterium smegmatis spatially and biochemically departitions in response to the fluidizing agent 
benzyl alcohol, then repartitions upon fluidizer washout. By screening for mutants that are sensitive 
to benzyl alcohol, we show that the bifunctional cell wall synthase PonA2 promotes membrane parti-
tioning and cell growth during recovery from benzyl alcohol exposure. PonA2’s role in membrane 
repartitioning and regrowth depends solely on its conserved transglycosylase domain. Active cell 
wall polymerization promotes de novo membrane partitioning and the completed cell wall polymer 
helps to maintain membrane partitioning. Our work highlights the complexity of membrane–cell 
wall interactions and establishes a facile model system for departitioning and repartitioning cellular 
membranes.

Editor's evaluation
This paper addresses an important question: the relationship between the cell wall and other, 
primarily lipid, based components of the cell envelope. Building on previous work, the authors 
provide solid data suggesting that the activity of PonA2, a non- essential peptidoglycan synthase, 
promotes membrane partitioning through its role in cell wall synthesis. Altogether, this work 
provides valuable insight into the mechanisms coordinating the synthesis of separate layers of 
the bacterial cell envelope and as such should be of interest to microbiologists working on similar 
aspects of growth- related processes across bacterial systems.

Introduction
Biological membranes are heterogeneous mixtures of lipids and proteins (Bernardino de la Serna 
et al., 2016; Singer and Nicolson, 1972). In eukaryotic cells, membrane domains have been linked 
to diverse functions, including signal transduction, membrane sorting, protein processing, and virus 
trafficking (Goñi, 2019; Simons and Sampaio, 2011). In bacterial cells, the molecular mechanisms and 
physiological significance of membrane partitioning in these organisms are only beginning to emerge. 
To date, the best- studied example is functional membrane microdomains (FMMs), which are present in 
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many bacterial species and are, like their eukaryotic counterparts, more liquid- ordered, or rigid, than 
the surrounding plasma membrane (López and Kolter, 2010). FMMs contribute to diverse biological 
functions, including signaling, cell morphology maintenance, and biofilm formation (Bach and Bram-
kamp, 2013; Dempwolff et al., 2012a; Dempwolff et al., 2012b; Mielich- Süss et al., 2013; Yepes 
et al., 2012; Zielińska et al., 2020). In contrast to FMMs, regions of increased fluidity (RIF) are more 
liquid- disordered than the surrounding membrane. RIFs are also present in many bacterial species but 
their function(s) remain relatively unexplored (Gohrbandt et al., 2022; Molohon et al., 2016; Strahl 
et al., 2014; Wenzel et al., 2018).

We have shown that bacteria of the pole- growing genus Mycobacterium—which includes both 
pathogens, such as Mycobacterium tuberculosis, and saprophytes, such as Mycobacterium smeg-
matis—partition their plasma membranes into the inner membrane domain (IMD; previously referred 
to as PMf or intracellular membrane domain) and conventional plasma membrane, which is termed 
the PM- CW as it is tightly associated with the cell wall (García- Heredia et al., 2021; Hayashi et al., 
2018; Hayashi et al., 2016; Morita et al., 2005; Puffal et al., 2022). The biophysical nature of the 
IMD is not known but may be more liquid- disordered than the surrounding PM- CW given that the IMD 
is enriched in enzymes that act on membrane- fluidizing polyprenols and lipid intermediates carrying 
polymethylated fatty acids (García- Heredia et al., 2021; Hayashi et al., 2018; Hayashi et al., 2016; 
Janas et  al., 1994; Morita et  al., 2005; Puffal et  al., 2022; Schroeder et  al., 1987; Valtersson 
et  al., 1985; Vigo et  al., 1984; Wang et  al., 2008). Biosynthetic pathways that are partitioned 
across the IMD and PM- CW include both the well- conserved, for example, cell wall peptidoglycan 
and plasma membrane phosphatidylethanolamine (PE), and the mycobacteria- specific, for example, 
plasma membrane glycolipids phosphatidylinositol mannosides (PIMs) and outer membrane phthioc-
erol dimycocerosate (PDIM) (García- Heredia et al., 2021; Hayashi et al., 2018; Morita et al., 2005; 
Puffal et al., 2022; Puffal et al., 2018). While the functional role of partitioning has not yet been 
demonstrated for most of these pathways, perturbations that departition the membrane also dampen 
peptidoglycan precursor production (García- Heredia et al., 2021), indicating that lateral partitioning 
may promote membrane- bound enzymatic reactions.

Partitioning in model membranes can be controlled by both bilayer- intrinsic factors, that is, protein 
(Yuan et al., 2021) and lipid composition (Beales et al., 2005; Korlach et al., 1999; Veatch and 
Keller, 2003), as well as bilayer- extrinsic factors, including temperature and interactions with other 
membranes and/or solid supports (Gordon et  al., 2008; Subramaniam et  al., 2013). It has been 
experimentally challenging to perform analogous experiments in the more- complex membranes of 
living cells (Gohrbandt et al., 2022). Therefore, most work on cellular membrane partitioning has 
concentrated on defining maintenance factors. One factor that maintains the behavior of membrane 
components across different domains of life is physical connection to extracellular surfaces. For 
example, enzymatic removal of neuronal extracellular matrix (Frischknecht et al., 2009) or the plant 
or bacterial cell wall (Daněk et al., 2020; Feraru et al., 2011; Martinière et al., 2012; McKenna 
et al., 2019; Wagner et al., 2020) can increase the lateral mobility of membrane proteins that are 
normally enriched in domains. However, even these loss- of- partitioning experiments can be compli-
cated to interpret. Continuing the cell wall example, genetic or pharmacological inhibition of cell 
wall synthesis sometimes, but does not always, disrupt membrane partitioning or proxies thereof 
(Daněk et al., 2020; Feraru et al., 2011; García- Heredia et al., 2021; Hayashi et al., 2018; Wagner 
et al., 2020). As well, construction of the external cell wall depends on lipid- linked intermediates that 
reside in the plasma membrane, blurring the distinction between bilayer- intrinsic and -extrinsic factors 
that control membrane partitioning. More broadly, the molecular mechanisms by which cells partition 
their membranes are poorly understood, making it difficult to parse the physiological significance of 
partitioning.

While studying membrane departitioning can illuminate requirements for maintenance, tracking 
repartitioning can shed light on the requirements for de novo establishment. Here we develop a 
benzyl alcohol- induced membrane departitioning/repartitioning model to screen for factors that 
control partitioning in cells. We identify ponA2 as a gene that helps M. smegmatis to recover from 
benzyl alcohol. PonA2 is a bifunctional cell wall synthase that is not required for M. smegmatis or M. 
tuberculosis growth but counteracts various stresses (Kieser et al., 2015a; Li et al., 2022; Patru and 
Pavelka, 2010; Vandal et al., 2009a; Vandal et al., 2008). Post- benzyl alcohol, PonA2 accelerates 
M. smegmatis regrowth and membrane repartitioning. Unlike its roles in localizing cell wall synthesis, 
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which depend on conserved transglycosylase and transpeptidase domains, or its role in maintaining 
cell morphology, which does not depend on either domain, PonA2’s contribution to membrane repar-
titioning depends solely on its conserved transglycosylase domain. While the cell wall glycan back-
bone helps to maintain membrane partitioning, our data suggest that the role of PonA2 is specific to 
de novo partitioning and occurs at least in part via active cell wall polymerization. By establishing a 
simple in vivo model system for membrane departitioning and repartitioning, we start to untangle the 
intricate relationship between membrane and cell wall organization.

Results
Reversible departitioning and repartitioning of the mycobacterial 
plasma membrane
We previously demonstrated that the known plasma membrane fluidizer benzyl alcohol (Friedlander 
et al., 1987; Ingram, 1976; Konopásek et al., 2000; Nagy et al., 2007; Strahl et al., 2014; Zielińska 
et al., 2020) disrupts the association of peptidoglycan precursor synthase MurG to the M. smegmatis 
IMD and halts polar growth of the organism (García- Heredia et  al., 2021). The effects of benzyl 
alcohol on peptidoglycan synthesis and growth reverse within 30 min after removing the chemical 
from the growth medium (García- Heredia et al., 2021). We wondered whether the ability of MurG to 
reassociate with the IMD post- benzyl alcohol extended to additional membrane domain constituents 
and/or fluidizers. Accordingly, we first treated M. smegmatis expressing functional fluorescent protein 
fusions to IMD- associated proteins GlfT2, Ppm1, and MurG (García- Heredia et al., 2021; Hayashi 
et al., 2016) with either benzyl alcohol or a different plasma membrane fluidizer, dibucaine (Kinoshita 
et al., 2019). IMD- associated proteins normally localize adjacent to the sites of polar growth in myco-
bacteria (García- Heredia et al., 2021; Hayashi et al., 2016). We found that Ppm1 and MurG were 
delocalized from the subpolar region by either chemical, whereas GlfT2 was delocalized only by dibu-
caine (Figure 1A and C and Figure 1—figure supplement 1). After 12 hr of recovery in the absence 
of the chemicals, the IMD marker proteins relocalized to their subpolar positions (Figure 1B). These 
data suggest that IMD- associated proteins can delocalize and relocalize to the subpolar region of the 
cell respectively in response to, and recovery from, different membrane- acting chemicals. The diver-
gent behavior of Ppm1 and MurG vs. GlfT2 in the presence of benzyl alcohol also implies that the 
nature and/or strength of IMD association with constituent proteins may vary.

As a complementary way to track membrane constituents, we examined the IMD and PM- CW 
biochemically. Under normal growth conditions, the IMD can be separated from the PM- CW by 
sucrose density gradient fractionation (García- Heredia et al., 2021; Hayashi et al., 2018; Hayashi 
et al., 2016; Morita et al., 2005); the IMD fractions are less dense and distinct from the PM- CW 
fractions. As before (García- Heredia et al., 2021), we found that benzyl alcohol treatment resulted 
in the apparent loss of membranous material from the IMD fractions (Figure 1D). We also observed 
IMD recovery within the 3 hr post- benzyl alcohol washout. Taken together, these data suggest that 
benzyl alcohol treatment and washout can serve as a model for reversible membrane departitioning 
and repartitioning.

Identification of non-essential genes that promote tolerance to and/or 
recovery from membrane fluidization
Subpolar IMD localization correlates closely with polar cell growth (Hayashi et al., 2018). We hypoth-
esized that the ability of M. smegmatis to recover from benzyl alcohol depends at least in part on 
its ability to reform the IMD, and therefore, that genes that promote membrane partitioning would 
constitute a subset of the genes that enable M. smegmatis to tolerate and/or recover from benzyl 
alcohol. In mycobacteria, the essential, tropomyosin- like protein Wag31 (DivIVA) promotes polar cell 
wall assembly and rod shape and promotes IMD protein localization and isolability (García- Heredia 
et al., 2018; Habibi Arejan et al., 2022; Jani et al., 2010; Kang et al., 2008; Melzer et al., 2018). 
While DivIVA depletion slowed M. smegmatis growth, as expected, we observed only a small addi-
tional growth defect when bacteria were exposed to benzyl alcohol (Figure 2—figure supplement 1). 
We reasoned that DivIVA may contribute more to membrane partitioning maintenance than to initia-
tion. Additionally, or alternatively, the essential role(s) of the protein may partially obscure its function 
in IMD biogenesis. Therefore, we used transposon sequencing (Gawronski et al., 2009; Goodman 

https://doi.org/10.7554/eLife.81924


 Research article      Cell Biology | Microbiology and Infectious Disease

Kado et al. eLife 2023;12:e81924. DOI: https://doi.org/10.7554/eLife.81924  4 of 31

0 50 100
0.0

0.5

1.0

1.5

2.0

GlfT2

% cell length

Fl
uo

re
sc

en
se

in
te

ns
ity

(%
)

0 50 100
0.0

0.5

1.0

1.5

2.0

Ppm1

% cell length

Fl
uo

re
sc

en
se

in
te

ns
ity

(%
)

0 50 100
0

1

2

3

4

MurG

% cell length

Fl
uo

re
sc

en
se

in
te

ns
ity

(%
)

No

Dibucaine
Benzyl alcohol

During
Benzyl alcohol

After
Benzyl alcohol

Before
Benzyl alcohol

IM
D

P
M

-C
W

Benzyl alcohol

wash out

Dibucaine

wash out

Phase GlfT2 Ppm1 Merge Phase GlfT2 MurG MergeB

C

Phase GlfT2 Ppm1 Merge Phase GlfT2 MurG MergeA
No

Benzyl alcohol

Dibucaine

D

Figure 1. Delocalization of inner membrane domain (IMD) proteins by membrane- disrupting chemicals in M. smegmatis. mCherry- GlfT2, Ppm1- 
mNeonGreen, and MurG- Dendra2 are functional fluorescent protein fusions to well- established, IMD- associated proteins (Hayashi et al., 2016; 
Hayashi et al., 2018; García- Heredia et al., 2021). IMD proteins were imaged after 1 hr benzyl alcohol or 1 hr dibucaine treatment, (A), and again 
12 hr after washout, (B). Pictures are representative of three independent experiments. Scale bars, 2.5 μm. (C) Fluorescence distributions of the fusion 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.81924


 Research article      Cell Biology | Microbiology and Infectious Disease

Kado et al. eLife 2023;12:e81924. DOI: https://doi.org/10.7554/eLife.81924  5 of 31

et al., 2009; Langridge et al., 2009; van Opijnen et al., 2009) to search for non- essential factors 
that promote tolerance to and/or recovery from membrane disruption. Using the TRANSIT platform 
(DeJesus et al., 2015), we identified six candidate genes (Figure 2 and Table 1) that fit our desired 
profile, that is, had fewer transposon insertions 16–24 hr post- benzyl alcohol exposure compared to 
DMSO vehicle control. Of these genes, ponA2 showed the greatest statistical significance.

PonA2 is one of three bifunctional transglycosylase/transpeptidase enzymes, also known as class A 
penicillin- binding proteins (aPBPs), involved in cell wall peptidoglycan biosynthesis in M. smegmatis. 
PonA1 and likely PonA2 are enriched in the PM- CW (García- Heredia et al., 2021; Hayashi et al., 
2016). While M. smegmatis PonA1 is essential for growth and/or viability, PonA2 and PonA3 are not 
(Kieser et al., 2015a; Patru and Pavelka, 2010; Vandal et al., 2008). PonA3 is not present in M. 
tuberculosis and not expressed in M. smegmatis under normal growth conditions (Patru and Pavelka, 
2010). In contrast, PonA2 is conserved in both species and promotes survival of M. smegmatis under 
stress conditions such as starvation or oxygen depletion; M. tuberculosis tolerance to heat, some anti-
biotics, acid, reactive oxygen and nitrogen; and M. tuberculosis survival in some mouse backgrounds 
(DeJesus et al., 2017; Kieser et al., 2015a; Li et al., 2022; Patru and Pavelka, 2010; Smith et al., 
2022; Vandal et al., 2009a; Vandal et al., 2008). As enzymatic removal of the M. smegmatis cell wall 
departitions the membrane (García- Heredia et al., 2021), we reasoned that PonA2 may promote 
membrane partitioning and opted to analyze this hit further.

PonA2 contributes to efficient mycobacterial growth following benzyl 
alcohol exposure
To test whether PonA2 contributes to benzyl alcohol recovery, we constructed a clean deletion mutant 
(∆ponA2) and a complemented strain (cponA2) by introducing ponA2 under its native promoter in the 
L5 integration site. We found that the number of colony- forming units (CFUs) for ∆ponA2 was compa-
rable to that of wild- type (Figure 3A and Figure 3—figure supplement 1) immediately after benzyl 
alcohol treatment, but that ∆ponA2 growth lagged during the early post- washout recovery period 
(Figure 3B). The ∆ponA2 growth delay was specific to benzyl alcohol as there was no delay after treat-
ment with the DMSO vehicle control. Furthermore, the defect in benzyl alcohol recovery was restored 
in the complemented strain (cponA2), indicating that the defect is due to the lack of ponA2. These 
data suggest that PonA2 helps M. smegmatis to recover from benzyl alcohol.

PonA2 restores membrane partitioning after benzyl alcohol treatment
M. smegmatis eventually restores membrane partitioning after benzyl alcohol treatment (García- 
Heredia et al., 2021; Figure 1B and D), but the factors that promote repartitioning are unknown. We 
used subpolar enrichment of IMD- associated Ppm1 (Figure 1; Hayashi et al., 2016) as a readout for 
membrane partitioning before and after benzyl alcohol treatment. Prior to benzyl alcohol exposure, 
Ppm1 was enriched in the subpolar regions of wild- type, ∆ponA2, and the complemented mutant 
(Figure 4A–C). Immediately after benzyl alcohol exposure, subpolar enrichment diminished for all 
three strains. During the recovery period, Ppm1 relocalized to the subpolar regions within ~3 hr for 
wild- type and ~1 hr for the complement (Figure 4C). However, Ppm1 did not completely relocalize in 
∆ponA2 even up to 6 hr of outgrowth (Figure 4A, C and D). These data indicate that PonA2 contrib-
utes to spatial repartitioning of the plasma membrane following benzyl alcohol- induced fluidization.

proteins after chemical treatment were calculated from three independent experiments. Lines show the average of all cells (50 < n < 75). Signal was 
normalized to cell length and total fluorescence intensity. Cells were oriented such that the brighter poles are on the right- hand side of the graph. See 
‘Materials and methods’ for details. (D) Lysates from M. smegmatis taken before, during, and 3 hr after benzyl alcohol treatment were sedimented in 
sucrose density gradients and imaged.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Datasets for plot profiles of inner membrane domain (IMD) protein localizations.

Figure supplement 1. The localization of inner membrane domain (IMD) proteins was not changed by Dimethyl sulfoxide (DMSO) in M. smegmatis 
(compare to Figure 1C).

Figure supplement 1—source data 1. Dataset for plot profile.

Figure 1 continued

https://doi.org/10.7554/eLife.81924
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As a complementary way to track membrane repartitioning, we examined the IMD and PM- CW by 
sucrose density gradient fractionation (García- Heredia et al., 2021; Hayashi et al., 2018; Hayashi 
et al., 2016; Morita et al., 2005). Benzyl alcohol treatment of both wild- type and ∆ponA2 M. smeg-
matis results in the apparent loss of membranous material from the IMD fractions (Figure 4D; García- 
Heredia et al., 2021). In contrast to wild- type, however, the mutant failed to recover the IMD within 
the 3 hr, post- benzyl alcohol washout period. This experiment suggests that, in addition to spatial 
repartitioning, PonA2 contributes to biochemical repartitioning of the plasma membrane after benzyl 
alcohol treatment.

DMSO vs Benzyl alcohol

Figure 2. Genes in which transposon insertions are under (red, left) or over (blue, right) represented in M. smegmatis exposed to benzyl alcohol relative 
to DMSO vehicle control. A transposon library was treated with benzyl alcohol or DMSO for 1 hr. Benzyl alcohol was washed away and bacteria were 
resuspended in Middlebrook 7H9 growth medium. The OD600 was then adjusted to 0.01 and bacteria were incubated for an additional 16–24 hr to 
an OD600 of ~1.0. The library was then collected for DNA sequencing. Transposon insertion counts presented relative to counts ratio (treated/control) 
per gene and the corresponding p- values calculated by Mann–Whitney U- test (y- axis) from n = 3 independent experiments. The horizontal gray line 
indicates p<0.05; the vertical gray lines indicate two- fold change.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw analysis data of Tnseq.

Figure supplement 1. Modest contribution of DivIVA to M. smegmatis recovery from benzyl alcohol.

Figure supplement 1—source data 1. Dataset for resazurin growth curve.

https://doi.org/10.7554/eLife.81924
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We did not identify other enzymes involved in peptidoglycan biosynthesis from the Tn- seq anal-
ysis. Transposon insertions do not always interrupt gene function, and trans- complementation can 
occur when mutants are pooled. When tested individually, however, loss of other, non- essential 
cell wall synthases, including the monofunctional SEDS family transglycosylase RodA (∆rodA) and 
multiple l,d- transpeptidases (∆ldtABE) had no effect on M. smegmatis outgrowth post- benzyl alcohol 
(Figure 4—figure supplement 1). These data suggest that promotion of membrane repartitioning is 
not a universal property of peptidoglycan biosynthetic and/or remodeling enzymes.

PonA2 does not localize membrane–cell wall interactions under 
unstressed conditions
Physical interactions between the plasma membrane and bilayer- extrinsic polymers have been 
proposed to maintain membrane partitioning in other systems (Daněk et al., 2020; Feraru et al., 
2011; Martinière et al., 2012; McKenna et al., 2019; Wagner et al., 2020). In mycobacteria, we 
have demonstrated co- fractionation of the plasma membrane and cell wall upon mechanical cell lysis, 
that is, PM- CW (García- Heredia et al., 2021; Hayashi et al., 2018; Hayashi et al., 2016; Morita 
et al., 2005; Puffal et al., 2022). The existence of the PM- CW implies that the plasma membrane and 
cell wall are physically associated. To test this hypothesis further, we developed a microfluidics- based 
assay (Figure 5A and B) to quantify and visualize membrane- cell wall interactions in M. smegmatis. 
In Escherichia coli, hyperosmotic shock causes severe plasmolysis, whereby the plasma membrane 
retracts from the cell wall, indicating that these structures are not strongly associated (Rojas et al., 
2018). As plasmolysis occurs in areas with weak membrane–cell wall association, we predicted that 
plasmolysis bays in M. smegmatis would preferentially form at sites of IMD enrichment, for example, 
subpolar foci. We exposed M. smegmatis in a microfluidics chamber to hyperosmotic shock and 
measured the number and location of plasmolysis bays. Bay formation was significantly more likely to 
occur in the subpolar region of the cell compared to the polar region (Figure 5C; note that the midcell 
region is a mix of IMD and PM- CW; García- Heredia et al., 2021; Hayashi et al., 2018; Hayashi et al., 
2016; Prithviraj et al., 2023), supporting the notion that membrane–cell wall interaction is weaker in 
the IMD than in the PM- CW.

One potential mechanism by which PonA2 contributes to membrane partitioning is by localizing 
membrane–cell wall interactions to the PM- CW. Consistent with delocalized membrane–cell wall inter-
actions, ∆ponA2 was less likely to plasmolyse than wild- type M. smegmatis (Figure 5D). As in M. 
tuberculosis (Kieser et al., 2015a), the mutant is wider than wild- type (Figure 5—figure supplement 
1A) but of similar length (Figure 5E), suggesting that decreased membrane surface area is unlikely 
to explain plasmolysis resistance in the absence of PonA2. Despite ∆ponA2’s decreased propensity 
to plasmolyse, however, we did not detect differences in the subcellular distribution of plasmolysis 
in the mutant relative to wild- type (Figure 5C). These data suggest that PonA2 does not significantly 

Table 1. Genes identified by Tn- seq.

Underrepresented in benzyl alcohol- treated M. smegmatis (candidates for promoting survival)

Gene locus Gene name Gene description

MSMEG_0846c – Putative monovalent cation/H+ antiporter subunit D

MSMEG_2775 nhaA Na+/H+ antiporter NhaA

MSMEG_4533c – Sulfate- binding protein

MSMEG_5488c – DNA- binding response regulator

MSMEG_5781c pstC Phosphate ABC transporter, permease protein PstC

MSMEG_6201 ponA2 Bifunctional transglycosylase/transpeptidase

Overrepresented in benzyl alcohol- treated M. smegmatis (candidates for impairing survival)

MSMEG_2768 – OB- fold nucleic acid binding domain- containing protein

MSMEG_2772 – Amino acid permease

MSMEG_5694 – Hypothetical protein MSMEG_5694

https://doi.org/10.7554/eLife.81924


 Research article      Cell Biology | Microbiology and Infectious Disease

Kado et al. eLife 2023;12:e81924. DOI: https://doi.org/10.7554/eLife.81924  8 of 31

DMSO

Ben
zy

l a
lco

hol
1×102

1×104

1×106

1×108

wild-type

C
FU

/m
L

ns

10-2

10-3

10-4

10-5

wild-type ΔponA2 ΔponA2

DMSO Benzyl alcohol

wild-type

A

B

Figure 3. PonA2 contributes growth recovery from benzyl alcohol. (A) Top, wild- type or ΔponA2 M. smegmatis were treated with benzyl alcohol for 
1 hr, then 10- fold serial dilutions were spotted on Middlebrook 7H10 agar. The image is representative of three independent experiments. Bottom, 
colony- forming units (CFUs) were calculated from three biological replicates. Colors correspond to same- day replicates. ns, no statistically significant 
difference by Mann–Whitney U- test. p=0.4 or p>0.99 respectively. (B) Benzyl alcohol- or DMSO vehicle- treated wild- type, ΔponA2, or complemented 

Figure 3 continued on next page
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contribute to membrane partitioning by localizing membrane–cell wall interactions, at least under 
basal conditions.

PonA2 promotes membrane repartitioning and regrowth post-
fluidization via its conserved transglycosylase domain
Given that PonA2 is a bifunctional transpeptidase/transglycosylase, we hypothesized that one or 
both of its enzymatic activities contribute to membrane homeostasis. Accordingly, we made point 
mutations to alter well- conserved, catalytically active amino acids (Figure 6—figure supplement 1), 
substitutions that have been previously shown to eliminate activity in in vitro assays for PBP1a (Born 
et al., 2006) and PBP1b (Terrak et al., 1999) in E. coli, and the transpeptidase function of PonA1 in 
M. smegmatis (Kieser et al., 2015b). Specifically, we complemented ∆ponA2 with ponA2 alleles that 
bear E108T (transglycosylase inactive [TG-]), S405A (transpeptidase inactive [TP-]), or both (TG-/TP-) 
mutations. Complementation with wild- type ponA2 restored the ability of M. smegmatis to tolerate 
a non- lethal challenge with moenomycin (Melzer et al., 2022), an antibiotic that targets aPBP trans-
glycosylation (Gampe et al., 2013; Meeske et al., 2016; Ostash and Walker, 2010; Welzel, 2005), 
and to bind normally to the fluorescent β-lactam Bocillin- FL, which covalently labels active PBP pepti-
dases (Wissel and Weiss, 2004). By contrast, and consistent with the notion that the TG- and TP- 
mutations respectively inactivate PonA2 transglycosylase and transpeptidase domains, these alleles 
failed to complement in the moenomycin and Bocillin- FL assays (Figure 6—figure supplement 2). 
∆ponA2 complemented with the TP- ponA2 allele behaved similarly to ∆ponA2 complemented with 
wild- type ponA2 for both post- benzyl alcohol outgrowth (Figure 6A) and membrane repartitioning 
(Figure 6B and C). However, the recovery of ∆ponA2 complemented with the TG- or TP-/TG- ponA2 
allele was delayed in a manner comparable to uncomplemented ∆ponA2. These data suggest that 
PonA2 promotes membrane repartitioning and regrowth post- benzyl alcohol via its conserved trans-
glycosylase domain.

PonA2’s roles in supporting polar cell wall elongation and rod 
morphology are genetically separable from its roles in membrane 
partitioning
We wondered whether PonA2 supports membrane homeostasis by localizing cell wall assembly. Previ-
ously we showed that the polarity of peptidoglycan synthesis decreases in the absence of RodA, a 
SEDS family transglycosylase, and upon treatment with aPBP transglycosylation inhibitor moenomycin 
(Melzer et al., 2022). To more directly assay the function of PonA2, we labeled nascent peptido-
glycan in wild- type and ∆ponA2 after a brief incubation in the presence of alkyne- d- alanine- d- alanine 
(alkDADA, also called EDA- DA; García- Heredia et al., 2018; Liechti et al., 2014) and detected the 
presence of the alkyne probe via copper- catalyzed alkyne- azide cycloaddition (CuAAC) to a fluo-
rescent azide label. In wild- type and ∆ponA2 mycobacteria, fluorescence was enriched at the cell 
poles, the sites of cell elongation in this genus (Aldridge et al., 2012; Joyce et al., 2012; Kieser 
and Rubin, 2014; Meniche et al., 2014; Santi et al., 2013; Singh et al., 2013; Thanky et al., 2007; 
Figure 7A). However, as with RodA absence or moenomycin treatment (Melzer et al., 2022), there 
was a modest decrease in the polarity of nascent peptidoglycan in ∆ponA2 compared to wild- type 
(Figure  7B and C). Moreover, a subpopulation of mutant cells had clear cell bulging (Figure  7A 
and Figure  5—figure supplement 1A), a phenotype that has long been linked to peptidoglycan 
defects (Burdon, 1946; Chung et al., 2009; Hett et al., 2010; Huang et al., 2008; Typas et al., 
2010; Vigouroux et al., 2020). The morphological defects are consistent with prior observations of 
aberrant width and morphology, respectively, in ∆ponA2 M. tuberculosis (Kieser et al., 2015a) and 
stationary phase ∆ponA2 M. smegmatis (Patru and Pavelka, 2010). However, in contrast to the role 

strain (cponA2) were washed three times then grown in Middlebrook 7H9 medium. Lines show the average and SD obtained from three independent 
experiments.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Colony- forming unit (CFU) and OD600 value for growth curves.

Figure supplement 1. PonA2 is dispensable for survival during benzyl alcohol treatment.

Figure 3 continued

https://doi.org/10.7554/eLife.81924
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Figure 4. PonA2 promotes membrane repartitioning after benzyl alcohol treatment. (A) Fluorescence imaging of M. smegmatis expressing Ppm1- 
mNeonGreen before benzyl alcohol treatment or after benzyl alcohol washout. Arrowheads indicate subpolar foci of Ppm1- mNeonGreen. Scale 
bars, 2.5 µm. Pictures are representative of three independent experiments. (B) Fluorescence of cells imaged as in (A) were quantitated from three 
independent experiments as in Figure 1C. Lines show the average of all cells (50 < n < 69). (C) The percentage of signal associated with the distal 
15% of rod- shaped cells is quantified to indicate polarity of fluorescence distribution. Each color in the super plots (Lord et al., 2020) represents an 
independent biological replicate. Smaller symbols are the polarities of each cell, and larger symbols are the means of the polarity in each replicate. 
Statistical significance was determined by the Kruskal–Wallis test, followed by Dunn’s multiple- comparison test. ns, no statistically significant difference 
(p=0.3313); *p=0.0130; **p=0.0037. Data were obtained from three or six independent experiments. (D) Lysates from M. smegmatis at indicated 

Figure 4 continued on next page
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of PonA2 in post- benzyl alcohol membrane repartitioning and regrowth, which depend solely on its 
transglycosylation domain (Figure 6), the role of PonA2 in localizing cell wall synthesis depended on 
both its transglycosylase and transpeptidase domains (Figure 7D). Furthermore, the role of PonA2 in 
maintaining normal rod shape did not depend on either domain (Figure 5—figure supplement 1B). 
The genetic separability of the phenotypes suggests that PonA2’s contributions to membrane parti-
tioning, polar peptidoglycan assembly, and cell morphology are distinct.

PonA2 promotes tolerance to benzyl alcohol-induced membrane 
permeabilization
Given that loss of PonA2 sensitizes mycobacteria to a variety of stresses (DeJesus et al., 2017; Kieser 
et al., 2015a; Li et al., 2022; Patru and Pavelka, 2010; Vandal et al., 2009b; Vandal et al., 2008), 
we also considered the possibility that the membrane partitioning and growth phenotypes of ∆ponA2 
uncovered by benzyl alcohol were associated with enhanced susceptibility to the chemical. For 
example, high fluidity can enhance the permeability of model membranes (Frallicciardi et al., 2022; 
Gabba et al., 2020; Lande et al., 1995; Rossignol et al., 1982). To test membrane permeability, we 
incubated wild- type and ∆ponA2 with propidium iodide, a dye that fluoresces upon DNA intercalation 
and is normally membrane- impermeant. At baseline, neither wild- type nor ∆ponA2 stained appre-
ciably with propidium iodide (Figure 7—figure supplement 1A). However, ~20% of wild- type cells 
were propidium iodide- positive after benzyl alcohol treatment (Figure 7—figure supplement 1A and 
C), indicating that benzyl alcohol- induced fluidization can compromise the membrane barrier. Under 
the same conditions,~60% of the ∆ponA2 cells were propidium iodide- positive (Figure 7—figure 
supplement 1A and C). These data suggest that ∆ponA2 cells are more permeable than wild- type 
following benzyl alcohol exposure.

Propidium iodide staining is often used to detect dead cells. However, the CFUs of bacteria with 
or without PonA2 or benzyl alcohol were similar (Figure 3A), suggesting that enhanced permeability 
was not lethal. These data are consistent with a previous report showing that >50% of log- phase, 
propidium iodide- stained Mycobacterium frederiksbergense were culturable (Shi et al., 2007). We 
reasoned that live, propidium iodide- positive M. smegmatis may be able to grow upon dye washout, 
and that DNA synthesis and subsequent cell division would dilute the fluorescence over time. To 
test whether the propidium iodide- positive cells were alive, we examined the fluorescence of the 
propidium iodide- positive population after washing out the dye. As a negative control, we incubated 
heat- killed cells in growth medium and confirmed that there was no change in fluorescence over time. 
In contrast, the propidium iodide- positive populations of wild- type and ∆ponA2 were reduced by half 
after 3 and 6 hr of outgrowth, respectively (Figure 7—figure supplement 1B), a rate of dilution that 
roughly correlated with the bulk population growth rate of the strains during the same time frame 
(Figure 3B). Thus, while loss of PonA2 exacerbates benzyl- alcohol- induced membrane permeabiliza-
tion, the perturbations alone or combined do not compromise viability.

As with the delayed growth and membrane repartitioning phenotypes of benzyl alcohol- exposed 
∆ponA2, enhanced membrane permeability was complemented by wild- type ponA2 but not by the 
TG- or TP-/TG- ponA2 alleles (Figure  7—figure supplement 1C). Complementation with the TP- 
ponA2 allele was intermediate between that with wild- type and TG- ponA2, although not statistically 
significant. These phenotypes imply that the role of the PonA2 in membrane permeability and parti-
tioning may be genetically linked. Therefore, we tested whether enhanced uptake of benzyl alcohol 

time points were sedimented in a sucrose density gradient. Representative images of the collection tubes after sucrose gradient fractionation at left. 
Densitometry of the membranous material (highlighted next to the tubes with solid and dashed gray lines) shown in the right panel. The lines are the 
average pixel values derived from three distinct lines across images obtained from a representative experiment. The lighter areas are the standard 
deviations. Images of wild- type sucrose gradient fractionations are repeated from Figure 1D for clarity.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw values for plot profiles of inner membrane domain (IMD) protein, raw values for the super plots, and raw values of densitometry.

Figure supplement 1. Following exposure to benzyl alcohol or DMSO vehicle control, cells were washed, resuspended in Middlebrook 7H9, and 
incubated with 0.0015% of resazurin.

Figure supplement 1—source data 1. Dataset for resazurin growth curve of mutants.

Figure 4 continued
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Figure 5 continued on next page
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could explain the delayed growth and membrane repartitioning of ∆ponA2 relative to wild- type 
(Figures 3B, 4 and 6). Accurate measurement of benzyl alcohol cell accumulation is challenging given 
its volatile nature. However, we reasoned that an uptake defect should manifest as concentration- 
dependent, differential sensitivity to benzyl alcohol between wild- type and ∆ponA2, an outcome that 
we did not observe (Figure 3—figure supplement 1). In aggregate, our data are most consistent with 
the notion that the PonA2 transglycosylase domain promotes tolerance to benzyl alcohol- induced 
membrane permeabilization.

The cell wall glycan backbone contributes to membrane partitioning 
maintenance
One potential mechanism by which PonA2 transglycosylation promotes membrane partitioning is via 
cell wall integrity. While we previously showed that spheroplasting delocalizes multiple IMD markers 
(García- Heredia et  al., 2021), complete removal of the cell wall may have pleiotropic effects on 
membrane physiology. More recently, we showed that limited peptidoglycan digestion by the glyco-
side hydrolases lysozyme and mutanolysin delocalizes the IMD- enriched protein MurG (Melzer et al., 
2022). To test the specificity of this observation, we examined the distribution of two additional IMD 
markers, Ppm1 and GlfT2 (Hayashi et al., 2018; Hayashi et al., 2016). Ppm1, but not GlfT2, modestly 
delocalized upon lysozyme and mutanolysin treatment (Figure 8A and Figure 8—figure supplement 
1). These results were consistent with the divergent behavior of Ppm1 and MurG vs. GlfT2 in the pres-
ence of benzyl alcohol (Figure 1A and C) and suggest that the maintenance of membrane partitioning 
is supported, directly or indirectly, by the cell wall glycan backbone.

De novo membrane partitioning is supported by concurrent cell wall polymerization. PonA2 helps 
M. smegmatis to tolerate (Figure 7—figure supplement 1) and recover from (Figures 3, 4 and 6) 
benzyl alcohol- induced membrane disruption. In the absence of benzyl alcohol treatment, however, 
∆ponA2 has normal growth, impermeability and Ppm1 localization, as well as a biochemically isolable 
IMD (Figures 3, 4 and 6, Figure 7—figure supplement 1). While ∆ponA2 was overall less likely to 
plasmolyse compared to wild- type (Figure  5D), there were no obvious differences in the subcel-
lular distribution of plasmolysis between the strains (Figure 5C). These data indicate that PonA2 is 
dispensable for maintaining membrane partitioning under unstressed conditions, at least to the limit 
of our detection. Therefore, we focused on understanding the role of PonA2 in de novo membrane 
partitioning.

Efficient membrane repartitioning post- benzyl alcohol depends on the conserved transglycosylase 
domain of PonA2 (Figure 6B and C). We considered the possibility that active cell wall polymerization 
might accelerate membrane partitioning. We previously demonstrated that treatment of M. smeg-
matis with the cell wall- targeting antibiotic d- cycloserine delocalizes IMD markers, but that it takes 
approximately one generation and the IMD remains biochemically isolable throughout (Hayashi et al., 
2018). In other organisms, cell wall polymerization and cell wall expansion can temporarily continue 
in the presence of d- cycloserine (Pisabarro et al., 1986; Sugimoto et al., 2017). To investigate a 

Images are representative of four independent experiments. (B) Cytoplasmic GFP enables visualization and quantitation of plasmolysis bays. Arrows 
indicate representative sites of plasmolysis. Scale bars, 2.5 μm. Images are representative of two independent experiments. (C) Analysis of the sites of 
plasmolysis (as defined in [B]) in wild- type (n = 85) and ΔponA2 (n = 101) M. smegmatis from two biological replicates performed in duplicate. For this 
analysis, we removed cells that did not plasmolyse. Statistical significance was determined by the two- way ANOVA test, followed by Šídák’s multiple- 
comparisons test. ****p<0.0001, ns, p>0.99. Polar, subpolar, and midcell bays spatially correlate with the PM- CW, inner membrane domain (IMD), and 
a mixture of PM- CW and IMD, respectively (García- Heredia et al., 2021; Hayashi et al., 2018; Hayashi et al., 2016; Prithviraj et al., 2023). (D) The 
proportion of cells that did not plasmolyse in (C) was calculated for wild- type (n = 90) and ΔponA2 (n = 123) M. smegmatis. Statistical significance was 
determined by the Mann–Whitney U- test. **p=0.045. (E) Cell lengths were analyzed for wild- type (n = 84) and ΔponA2 (n = 132) M. smegmatis from 
three biological replicates. Each color in the super plots (Lord et al., 2020) represents an independent biological replicate. Smaller symbols are the 
lengths of individual cells, and larger symbols are the means of each replicate. Statistical significance was determined by the Mann–Whitney U- test. ns, 
p=0.4.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw values of the proportions of where plasmolysis bay were seen, population without plasmolysis, and cell length.

Figure supplement 1. M. smegmatis width profiles of cells along the normalized cell length were determined by Oufti (Nguyen et al., 2007; 
Paintdakhi et al., 2016) and a Python script here (copy archived at Sparks, 2023).

Figure 5 continued

https://doi.org/10.7554/eLife.81924
https://github.com/hirok-UMass/15-07-2022-RA-eLife-81924R2


 Research article      Cell Biology | Microbiology and Infectious Disease

Kado et al. eLife 2023;12:e81924. DOI: https://doi.org/10.7554/eLife.81924  14 of 31

ponA2
ponA2 + wild-type ponA2
ponA2 + TG- ponA2

ponA2 + TP- ponA2
ponA2 + TG- TP- ponA2

wild-type

Resazurin growth curve

po
nA

2

ponA2 background

wi
ld

-ty
pe

 p
on

A2
TG

- p
on

A2
TP

- p
on

A2
TG

- T
P-

 p
on

A2

 Polarity of
3 hours after wash out

ns

ns

A

B C

2 2 2 2 2

ns

ns

Figure 6. Transglycosylase domain of PonA2 accelerates regrowth and membrane repartitioning post- benzyl alcohol. (A) Following exposure to 
benzyl alcohol or the DMSO vehicle control, cells were washed, resuspended in Middlebrook 7H9, and incubated with 0.0015% of resazurin. Data were 
obtained from three independent experiments and are means of biological duplicates or triplicates. (B) Inner membrane domain (IMD) marker (Ppm1- 
mNeonGreen) polarities were assessed in mutants before, during, or 3- or 6 hr after benzyl alcohol treatment as in Figure 4C. Data from ΔponA2 and 
ΔponA2 complemented with wild- type ponA2 are repeated from Figure 4C for ease of comparison. Each color in the super plots (Lord et al., 2020) 

Figure 6 continued on next page
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role for cell wall polymerization in de novo membrane partitioning, we first titrated d- cycloserine and 
the aPBP transglycosylase inhibitor moenomycin to identify concentrations that were sublethal but 
inhibitory. We next compared M. smegmatis growth in the presence or absence of the antibiotics 
during the recovery period after benzyl alcohol washout. d- cycloserine inhibited growth equally in M. 
smegmatis exposed or not to benzyl alcohol, at all concentrations tested (Figure 8B, left). By contrast, 
moenomycin inhibited growth to a modestly greater extent in M. smegmatis that had been previ-
ously exposed to benzyl alcohol (Figure 8B, right). These results, together with our genetic data that 
demonstrate a role for PonA2’s transglycosylase domain in recovery from benzyl alcohol (Figure 6), 
suggest that cell wall polymerization accelerates de novo membrane partitioning.

Discussion
Lateral organization is likely to be a key regulator of plasma membrane function yet is experimentally 
challenging to manipulate in living cells. Given that benzyl alcohol can reversibly fluidize membranes 
in other bacteria and in eukaryotic cells (Balogh et al., 2005; Chabanel et al., 1985; Coster and 
Laver, 1986; Friedlander et al., 1987; Hubbell et al., 1970; Konopásek et al., 2000; Nagy et al., 
2007; Paterson et al., 1972; Shigapova et al., 2005; Strahl et al., 2014; Zielińska et al., 2020), our 
inducible departitioning/repartitioning model (Figure 1) and subsequent screening (Figure 2) may 
be a generalizable approach to genetically dissect the mechanisms by which cellular membranes are 
partitioned.

Factors that establish and maintain plasma membrane partitioning are likely important for cell 
fitness but may be distinct from each other. We previously demonstrated that there is a close correla-
tion between membrane partitioning and cell growth in M. smegmatis (Hayashi et al., 2018) and 
that the known chemical fluidizer benzyl alcohol departitions the membrane and halts growth in this 
organism (García- Heredia et al., 2021). Building on these observations, we screened here for myco-
bacterial genes that promote recovery from benzyl alcohol, a subset of which we hypothesized would 
also promote membrane partitioning. We identified a factor, cell wall synthase PonA2, that establishes 
membrane partitioning via its transglycosylase domain. Our earlier work had suggested that peptido-
glycan damage and/or removal (García- Heredia et al., 2021; Melzer et al., 2022), but not specific 
defects in peptidoglycan synthesis (Hayashi et al., 2018), departition the M. smegmatis membrane. 
Similar, seemingly incongruous observations have been made for the roles of the cell wall and its 
synthesis in other bacteria (Wagner et al., 2020) and in plants (Daněk et al., 2020). By dissecting 
the role of PonA2 in the presence or absence of benzyl alcohol- induced membrane disruption, we 
find that active cell wall polymerization helps in establishing membrane partitioning, which in turn is 
maintained at least in part by the completed cell wall polymer. Membrane partitioning correlates with 
active M. smegmatis growth, although a causative role of partitioning in growth remains speculative.

We envision at least three scenarios, not mutually exclusive, by which PonA2 regulates membrane 
partitioning. Membrane- bound proteins and/or other biomolecules may partition the bilayer by teth-
ering it to the cell wall and influencing protein and lipid diffusion. In this first model (Figure 9A), 
PonA2 accelerates membrane partitioning by fashioning a cell wall structure that is conducive to teth-
ering. In the second model (Figure 9B), PonA2 accelerates membrane partitioning because nascent 
cell wall polymers themselves act as transient tethers between the plasma membrane (via a polyprenol 
phosphate anchor) and the cell wall (via partial incorporation into the existing peptidoglycan mesh). 

represents an independent biological replicate. Smaller symbols are the polarities of each cell, and larger symbols are the means of each replicate. 
(C) The polarity of 3 hr time points from (B) were compiled and compared across mutants. The bar graph shows the average and standard deviation. 
Statistical significance was determined by the Kruskal–Wallis test, followed by Dunn’s multiple- comparison test. ns, no statistically significant difference 
(p=0.2538 or 0.7601 respectively); ****p<0.0001; ***p=0.0002.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Raw values of resazurin growth curve, super plots, and polarity of 3 hr after wash out.

Figure supplement 1. Protein alignments of PBP1a of E. coli and PonA1 and PonA2 of M. smegmatis.

Figure supplement 2. Enzymatic activity of catalytic inactive mutants.

Figure supplement 2—source data 1. Dataset for resazurin growth curve of moenomycin- treated mutants.

Figure 6 continued
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Figure 7. PonA2 localizes peptidoglycan synthesis and maintains cell morphology. (A) Nascent peptidoglycan in wild- type or ΔponA2 M. smegmatis 
was labeled for 15 min (~10% generation) with alkyne- d- alanine- d- alanine (alkDADA) followed by copper- catalyzed alkyne- azide cycloaddition (CuAAC) 
with AFDye488 Azide. Scale bars, 1 µm. Pictures are representative of three independent experiments. (B) Wild- type and ΔponA2 strains were labeled 
as in (A) and subcellular fluorescence was quantitated as in Figure 1C. Lines show the average of all cells (50 < n < 68) obtained by three independent 
experiments. (C) The percentage of signal associated with the distal 15% of rod- shaped cells quantified to indicate polarity of fluorescence distribution. 
Statistical significance was determined by Mann–Whitney U- test. p- value, *p=0.0227. (D) Polarity ratio of catalytically inactive mutants. Statistical 

Figure 7 continued on next page
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In the third model (Figure 9C), PonA2 accelerates membrane partitioning by controlling lipid II pools. 
In in vitro membrane systems, lipid II both generates and homes to more fluid regions (Ganchev 
et al., 2006; Jia et al., 2011; Valtersson et al., 1985). Spatial and/or temporal regulation of lipid II 
consumption in cellular membranes may serve a bilayer- intrinsic role in membrane partitioning. Finally, 
while we favor a direct role for cell wall synthesis and/or structure in organizing the plasma membrane 
as the most parsimonious explanation for our data, it is possible that PonA2 indirectly supports other 
aspects of the cell envelope, which in turn feed back on the plasma membrane.

In laterally growing, rod- shaped bacteria, it is thought that the SEDS- family transglycosylase RodA 
lays the template for cell wall elongation while the bifunctional, transglycosylase/transpeptidase 
aPBPs fill in the gaps for maintenance and repair (Cho et al., 2016; Mueller et al., 2019; Murphy 
et al., 2021; Paradis- Bleau et al., 2010; Typas et al., 2010; Vigouroux et al., 2020). Unlike most 
organisms in which this model has been tested, pole- growing Mycobacteriales lack the cytoskeletal 
protein MreB and do not require RodA for viability or shape (Arora et al., 2018) so the division of 
labor has been less clear (Melzer et al., 2022; Sher et al., 2021). Given that PonA2 but not RodA 
contributes to membrane partitioning in M. smegmatis (Figure 4—figure supplement 1), and the 
models above (Figure 9), it may be that PonA2 and RodA build nascent cell wall polymers and/or 
mature cell wall structures with different tethering capacities. Additionally, or alternatively, PonA2 and 
RodA may consume lipid II in ways that differentially impact the fluidity of the membrane.

PonA2 is not required for M. smegmatis or M. tuberculosis growth. However, the bifunctional 
transglycosylase/transpeptidase protects these organisms from various stresses, including antibiotics 
with different structures and cellular targets (Kieser et al., 2015a; Li et al., 2022; Patru and Pavelka, 
2010; Vandal et al., 2009a; Vandal et al., 2008), a phenotype that suggests enhanced small mole-
cule permeability. Aberrant peptidoglycan synthesis in the absence of PonA2 may disrupt the cell 
envelope layers outside of the peptidoglycan, including the mycomembrane. As mycomembrane- 
disrupting mutations can sensitize mycobacteria to many antibiotics (Gao et al., 2003; Li et al., 2022; 
Liu and Nikaido, 1999; Nguyen et al., 2005; Philalay et al., 2004; Vilchèze et al., 2014), it is often 
assumed that the mycomembrane is the primary determinant of mycobacterial impermeability and 
intrinsic antibiotic resistance. Our work suggests that ponA2 mutations can also impact the orga-
nization and integrity of the layer inside of the peptidoglycan, the plasma membrane. It is an open 
question whether and how plasma membrane defects contribute to the stress- specific phenotypes of 
mycobacterial ponA2 mutants.

Individual steps of the bacterial cell wall synthesis pathway are partitioned within the plasma 
membrane. For example, RIFs are enriched for MurG, the synthase for the polyprenol phosphate- 
linked cell wall precursor lipid II (Müller et al., 2016; Strahl et al., 2014). FMMs are enriched for 
lipid II flippase MurJ and for extracellular synthases that use lipid II to assemble the cell wall (García- 
Fernández et al., 2017). In mycobacteria, we have demonstrated that lipid II is made in the IMD, 
then trafficked to, and likely polymerized in, the PM- CW (García- Heredia et al., 2021). Our data now 
support a model in which active cell wall synthesis helps to initiate a positive feedback loop between 

significance was determined by the Kruskal–Wallis test, followed by Dunn’s multiple- comparison test. Data were obtained from the three independent 
experiments. ****p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Raw values of plot profiles and polarity of peptidoglycan synthesis.

Figure supplement 1. PonA2 promotes cell impermeability upon benzyl alcohol treatment.

Figure supplement 1—source data 1. Dataset for propidium- iodide- positive population.

Figure 7 continued

https://doi.org/10.7554/eLife.81924
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membrane and cell wall organization, which is then maintained by the cell wall glycan backbone. 
Damage to the cell wall, which we accomplish experimentally by treatment with glycoside hydrolases, 
interrupts this pro- growth feedback loop and departitions the membrane (Figure 8A; García- Heredia 
et al., 2021; Melzer et al., 2022), which in turn delocalizes the synthesis of peptidoglycan and other 
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Figure 8. Maintenance and establishment of membrane partitioning are respectively supported by the cell wall glycan backbone and active cell wall 
polymerization. (A) Left, images of M. smegmatis expressing inner membrane domain (IMD) marker Ppm1- mNeonGreen ± 60 min treatment with cell 
wall hydrolases lysozyme and mutanolysin. Arrowheads indicate subpolar foci of Ppm1- mNeonGreen. Bars highlight dispersed fluorescent signal of 
Ppm1- mNeonGreen. Scale bars, 5 µm. Middle, quantitation of Ppm1- mNeonGreen polarity for cells with no treatment (n = 134) or lysozyme/mutanolysin 
treatment (n = 187). Lines show the average of all cells. Right, the percentage of Ppm1- mNeonGreen signal associated with the distal 15% of rod- 
shaped cells is quantified to indicate polarity of fluorescence distribution. Each color in the super plots (Lord et al., 2020) represents an independent 
biological replicate. Smaller symbols are the polarities of each cell and larger symbols are the means of each replicate. The line shows the average 
and standard deviation. Data were obtained from three independent experiments. Mann–Whitney U p- value, *p=0.04. (B) Bacteria treated with benzyl 
alcohol (dashed line) or DMSO vehicle (solid line) were washed then grown in Middlebrook 7H9 with d- cycloserine or moenomycin at the indicated 
concentrations. The lines are the average of two or three biological replicates.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Raw values of plot profiles and resazurin growth curves.

Figure supplement 1. Top, images of M. smegmatis expressing inner membrane domain (IMD) marker mCherry- GlfT2 ±60 min treatment with cell wall 
hydrolases lysozyme and mutanolysin.

Figure supplement 1—source data 1. Dataset for plot profiles of inner membrane domain (IMD) protein and super plot of polarity.

https://doi.org/10.7554/eLife.81924
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Figure 9. Working models for the role PonA2 in de novo plasma membrane partitioning. Inner membrane domain (IMD) (blue) and PM- CW (orange) 
have distinct proteomes and lipidomes (Hayashi et al., 2016). PonA2, likely enriched in the PM- CW (García- Heredia et al., 2021; Hayashi et al., 
2016), polymerizes peptidoglycan using lipid II as a donor substrate, which in turn is produced by MurG in the IMD. PonA2 also cross- links nascent 
glycan strands into the existing cell wall. Upon membrane fluidization, lipid II and IMD- enriched proteins are no longer confined to the IMD (García- 
Heredia et al., 2021). PonA2 may promote membrane repartitioning post- fluidization via: (A) a mature peptidoglycan structure that directly or 
indirectly interacts with the membrane (red arrows), (B) nascent peptidoglycan polymers that transiently tether the membrane to the cell wall, and/or 
(C) consumption of lipid II, in turn regulating membrane fluidity.

https://doi.org/10.7554/eLife.81924
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cell envelope components to the sidewall (García- Heredia et al., 2021; García- Heredia et al., 2018). 
We hypothesize that delocalized envelope synthesis enables mycobacteria to robustly respond to 
and repair cell- wide damage (García- Heredia et al., 2018). Once the stress has passed, we further 
posit that the pro- growth, membrane–cell wall feedback loop begins anew. The interplay between 
membrane and cell wall organization may enable mycobacterial cells to adjust polar growth and side-
wall repair as needed.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Mycobacterium smegmatis 
mc2155) M. smegmatis NC_008596 in GenBank Wild- type M. smegmatis

Strain, strain background (M. 
smegmatis) mCherry- GlfT2 and Ppm1- mNeonGreen Hayashi et al., 2016 See reference for details

Strain, strain background (M. 
smegmatis) mCherry- GlfT2 and MurG- Dendra2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis) DponA2 wild- type background This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 wild- type background 
complementing wild- type ponA2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 wild- type background 
complementing TG- ponA2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 wild- type background 
complementing TP- ponA2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 wild- type background 
complementing TG- and TP- ponA2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 mC- GlfT2 and Ppm1- mNG 
background This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 mC- GlfT2 and Ppm1- mNG 
background complementing wild- type 
ponA2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 mC- GlfT2 and Ppm1- mNG 
background complementing TG- ponA2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 mC- GlfT2 and Ppm1- mNG 
background complementing TP- ponA2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

DponA2 mC- GlfT2 and Ppm1- mNG 
background complementing TG- and TP- 
ponA2 This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis) mCherry- GlfT2/DivIVA- eGFP- ID

García- Heredia et al., 
2021 See reference for details

Strain, strain background (M. 
smegmatis) GFP expressing wild- type This study

The mutant was generated as described in 
Supplementary material and methods

Strain, strain background (M. 
smegmatis)

GFP expressing DponA2 background of 
wild- type This study

The mutant was generated as described in 
Supplementary material and methods

Software, algorithm MATLAB codes

García- Heredia et al., 
2018; Paintdakhi et al., 
2016 RRID:SCR_001622

Scripts designed for MATLAB to analyze the 
fluorescence profiles along a cell body from data 
collected in Oufti.

Other Python script This study
See ‘Materials and methods’ and Source code 1 for 
details

Software, algorithm ImageJ Schindelin et al., 2012 RRID:SCR_003070 See reference for details

Software, algorithm GraphPad Prism 9 Commercially available RRID:SCR_002798

Bacterial strains and growth conditions
Markerless, knock- in M. smegmatis strains expressing both HA- mCherry- GlfT2 and Ppm1- 
mNeonGreen- cMyc or HA- mCherry- GlfT2 alone were previously established (Hayashi et al., 2016). 
M. smegmatis mc2155 (wild- type), ∆ponA2, and ∆ponA2 L5::ponA2 (wild- type and various alleles 

https://doi.org/10.7554/eLife.81924
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of ponA2) were grown in Middlebrook 7H9 growth medium (BD Difco, Franklin Lakes, NJ) supple-
mented with 11 mM glucose, 14.5 mM NaCl, 0.4% (vol/vol) glycerol, and 0.05% (vol/vol) Tween- 80 
(Sigma–Aldrich, St. Louis, MO), as well as kanamycin (50 μg/mL) and/or hygromycin (50 μg/mL) where 
appropriate. Bacteria were grown at 37°C with shaking at 130 rpm. For chemical treatments, 200 µL of 
5 M benzyl alcohol in DMSO (Sigma- Aldrich) or 20 µL of 0.2 M dibucaine in water (Sigma- Aldrich) was 
added to a 10 mL log- phase culture to achieve a final concentration of 100 mM or 0.4 mM, respec-
tively,. The same volume of DMSO (200 μL to 10 mL culture, 2% [v/v]) or water (20 μL for 10 mL culture) 
was added as negative control. Phosphate- buffered saline (PBS) with 0.05% (vol/vol) Tween- 80 (PBST) 
was used to wash out benzyl alcohol prior to resuspending bacteria in Middlebrook 7H9.

Transposon library construction
A transposon library of M. smegmatis was made by using Himar mutagenesis as previously described 
(Long et al., 2015; Siegrist and Rubin, 2009). Briefly, Φ MycoMarT7 phage (Piddock et al., 2000) 
and a log- phase M. smegmatis culture were mixed and incubated for at 37°C for 4 hr. Cells were 
spread on Middlebrook 7H10 medium supplemented with 11 mM glucose, 14.5 mM NaCl, 0.5% glyc-
erol, 0.05% Tween 80, and 50 μg/mL of kanamycin and incubated for 2–3 d at 37°C, yielding a library 
of ~105 mutants. The library was prepared by scraping colonies and stored as frozen stocks in Middle-
brook 7H9 medium with 25% (vol/vol) glycerol at –80°C for further experiments. Library coverage of 
TA dinucleotide sites was determined to be ~35% by Illumina sequencing.

Benzyl alcohol selection of transposon libraries
A frozen stock was thawed and 20 μL of the stock was inoculated to 20 mL of Middlebrook 7H9 
medium. After overnight incubation at 37°C to allow the library to recover, this library starter culture 
was subcultured into 100 mL cultures to make a log- phase culture. The log- phase culture was treated 
by benzyl alcohol or DMSO vehicle control for 1 hr. Both cultures were washed three times with PBST 
and resuspended in Middlebrook 7H9 at a starting OD600 of 0.01. The cultures were incubated at 37°C 
until the OD600 became 1.0 in order to standardize the number of outgrowth generations between 
libraries to approximately 6.5 generations.

Sequencing of transposon mutant libraries
Genomic DNA was extracted from benzyl alcohol- or DMSO- treated transposon libraries, and the 
library mutant composition was determined by sequencing amplicons of the transposon- genome 
junctions as previously described using primers indicated in Supplementary file 1 (DeJesus et al., 
2017; Long et al., 2015). On average, library sequencing yielded between 0.5 million and 4 million 
unique transposon- inserted- sequences which cover over 35% of the possible TA sites in the genome.

Mapping and quantification of transposon insertions
Raw sequence data were processed using the TPP tool from the TRANSIT TnSeq analysis platform 
(DeJesus et al., 2015), and transposon genome junctions were mapped to the M. smegmatis mc2155 
reference genome (GenBank accession number NC_018143.1) using the Burroughs- Wheeler aligner 
(Li and Durbin, 2009). To account for possible PCR amplification biases, reads corresponding to the 
same TA site and possessing the same 7- nucleotide barcode were derived from the same template, 
and these duplicate reads were discarded from the final template counts. Data in Figure  2 were 
obtained from three biological replicates.

Identification of genes affecting fitness under benzyl alcohol selection
Genes conditionally affecting fitness in the presence of benzyl alcohol were identified using the resa-
mpling test module in the TRANSIT analysis platform as previously described (DeJesus et al., 2017; 
DeJesus et al., 2015). In brief, we treated DMSO (a control treatment) and benzyl alcohol to trans-
poson mutant library in triplicate. After washing out by PBST thrice, OD600 was adjusted to 0.01. 
The cultures were incubated for 16–24 hr to OD600~1.0. DNA was isolated from 30 mL of culture, 
sequenced, and analyzed as described in the previous work (DeJesus et al., 2017; DeJesus et al., 
2015).

https://doi.org/10.7554/eLife.81924
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Construction of plasmids and mutants
pMUM264
To delete the endogenous ponA2 gene, we amplified upstream and downstream regions of ponA2 
using the A980 and A981 (all primers are shown in Supplementary file 1). These two fragments were 
assembled into pCOM1 (Hayashi et al., 2016) at Van91I sites by Gibson assembly (New England 
Biolabs). The assembled plasmid, pMUM264, was transformed into M. smegmatis by electroporation, 
and positive clones were isolated based on hygromycin resistance and SacB- dependent sucrose sensi-
tivity. Correct deletion of the ponA2 gene was confirmed by PCR.

pMUM280
Primers A980 and A981 were designed to amplify ponA2, including 192 bp of upstream native promoter 
region from wild- type. The PCR fragment was assembled into pMUM 126 (Hayashi et al., 2016) at 
KpnI- XbaI sites by Gibson assembly. The assembled plasmid, pMUM280, was transformed into M. 
smegmatis by electroporation, and positive clones were isolated based on kanamycin resistance.

pMUM293 (TG-) and 294 (TP-)
Primers A995 to A998 were designed to make point mutations of ponA2 as shown in Supplemen-
tary file 1 using the Q5 Site- Directed Mutagenesis Kit (New England Biolabs). After mutations were 
confirmed by sequencing, the resulting plasmid, pMUM293 or 294, was transformed into M. smeg-
matis as above.

pMUM295 (TG-/TP-)
The part of pMUM293 which includes the TG region was digested by SacI and MluI and the fragment 
was inserted into the same region of pMUM294 by ligation.

CFUs and growth curves
Wildtype, ∆ponA2, and the complemented strain (cponA2) cells were grown to stationary phase, then 
back- diluted and allowed to grow overnight to log phase (OD600 0.5–0.8). Cultures were treated with 
DMSO or benzyl alcohol (100 mM of final concentration) at 37°C with shaking at 150 rpm for 1 hr. The 
treated cultures were washed with PBST three times and resuspended in Middlebrook 7H9 medium at 
a starting OD600 of 0.1 for continuous OD measurement in 125 mL flasks (Figure 3C) or 96- well- plate 
with antibiotics (Figure 8B). BioTek Synergy 2 was used for the growth curve in 96- well- plate. Aliquots 
(20 μL) were serial diluted with 7H9 media (200 μL) and 5 μL of aliquot is plated for CFUs.

Resazurin growth curves
Our Tn- seq experiment (Figure 2) and initial validation (Figure 3B) were performed in 7H9 growth 
medium that lacked albumin. We found that M. smegmatis clumped when grown in the same medium 
in 96- well plate format, precluding accurate OD600 readings. Addition of albumin prevented clumping. 
However, genetic or chemical perturbation of PonA2 no longer had a phenotype post- benzyl alcohol 
when albumin was included in the growth medium. While we do not yet understand this effect, we 
speculate that albumin might mitigate benzyl alcohol- induced fluidization and/or alter osmolarity. 
Therefore, we used resazurin reduction as an alternative, high- throughput method to assess M. smeg-
matis growth ± benzyl alcohol for the experiments in Figures 6A and 8B (Eagen et al., 2018). In brief, 
cells were washed three times with PBST and resuspended in Middlebrook 7H9 following a 1 hr treat-
ment with DMSO vehicle control or benzyl alcohol. Then, 200 µL of culture and 20 µL of 0.015% (w/v) 
resazurin (Acros Organics) were mixed in 96- well- plates, and absorbance at 570 nm and 600 nm wwas 
measured by the Synergy H1 Hybrid microplate reader (BioTek) overnight. The percent of reduced 
resazurin was calculated as before (Eagen et al., 2018).

Microscopy and image analysis
An aliquot (5 µL) of bacterial culture was inoculated on an agar pad (1% agarose in water) placed on a 
glass slide glass. Images were acquired on Nikon Eclipse E600. Cell outlines were traced using Oufti 
(Nguyen et  al., 2007; Paintdakhi et  al., 2016). Intensity profiles were generated using MATLAB 
code as described in García- Heredia et al., 2018. Polarity ratios were calculated by combining signal 

https://doi.org/10.7554/eLife.81924
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values for 15% of the cell length on either pole and dividing the sum by total cell fluorescence. Super 
plots were generated as described.

Membrane fractionation
Log- phase M. smegmatis cells treated with benzyl alcohol were harvested by centrifugation and 
washed in PBST. One gram of wet pellet was resuspended in 4 mL of lysis buffer containing 25 mM 
HEPES (pH 7.4), 20% (wt/vol) sucrose, 2 mM EGTA, and a protease inhibitor cocktail (Thermo Fisher 
Scientific, Waltham, MA) as described (Morita et al., 2005). Bacteria were lysed by high pressure 
of nitrogen (~2000 ppm). The lysate was centrifuged, and supernatant was spotted on the top of a 
tube containing sucrose gradient (20–50% [w/v], 25 mM HEPES). The sample was sedimented by ultra 
centrifuge (Beckman- Coulter) at 35,000 rpm for 6 hr on SW- 40Ti rotor (Beckman- Coulter) at 4°C as 
in the previous literature (García- Heredia et al., 2021; García- Heredia et al., 2021; Hayashi et al., 
2016; Morita et al., 2005). The tubes were imaged after sedimentation.

Densitometry analysis
Images in Figure 4D were converted to grayscale in ImageJ (Schindelin et al., 2012). Three parallel 
lines were drawn from the top of the tube to the middle of tube. The gray values along the lines were 
quantified in each pixel. The average and standard deviation were plotted.

Bocillin-FL
Cell lysates were prepared by bead beating as in the previous literature (Rahlwes et al., 2017). Then, 
30 μg protein of cell lysate was incubated with 100 pmol Bocillin- FL (Invitrogen) in a total volume of 
7.5 μL for 30 min in 37°C (Levine and Beatty, 2021). The sample was mixed with 2.5 μL of 4×-SDS- 
loading buffer and boiled for 3 min at 98°C. The entire sample was subjected to SDS- PAGE analysis. 
Gel was imaged by Amersham ImageQuant 800 system (Cytiva).

Cell wall damage
Cells expressing mCherry- GlfT2 were grown to stationary phase, then back- diluted and allowed to 
grow overnight to log phase (OD600 = 0.5–0.8). Cultures were incubated at 37°C shaking at 300 rpm in 
Benchmark Scientific MultiTherm Shaker H5000- H for 1 hr with 500 μg/mL lysozyme (Sigma- Aldrich, 
prepared fresh) and 500 U/mL mutanolysin (Sigma- Aldrich). Cells were imaged as described above.

Cell envelope labeling
AlkDADA was custom synthesized by WuXi Apptec. Mid- log M. smegmatis was labeled with 2 mM 
alkDADA for 15 min. Cells were washed with PBST containing 0.01% BSA (PBSTB) and fixed in 2% 
formaldehyde at room temperature for 10 min. Cells were washed twice and applied for the reaction 
with CuAAC AFDye488 Azide (Click Chemistry Tool, Scottsdale, AZ) as described (García- Heredia 
et al., 2018; Siegrist et al., 2013).

Cell width morphology profiles
Cells were placed on an agar pad slide, and imaged by phase microscopy (Nikon Eclipse E600, Nikon 
Eclipse Ti with ×100 objectives, N.A.=1.30). From the phase microscopy images, cells were outlined 
and segmented using Oufti (Paintdakhi et al., 2016). Cell width data were exported from Oufti and 
analyzed using a custom Python script. Using this script, cell lengths were normalized to a length of 
1 (midcell = 0.5) and their width along their length was plotted as a line with each line representing 
a single cell. Multiple cell width profiles were superimposed on top of each other to visualize the 
major morphological trend (rod vs. blebbed). Additionally, percentages of cells with maximum widths 
≥0.95 µm (green dotted line) were counted and the total percentage of cells obtaining widths at or 
above these thresholds was displayed.

Imaging in microfluidic devices
We used a Nikon Eclipse Ti2- E inverted fluorescence microscope with a ×100 (N.A. 1.40) oil- immersion 
objective for imaging DU885 electron- multiplying charge- coupled device camera (Andor) for imaging 
(Rojas et  al., 2018). Devices were kept at 37°C for imaging. Cells were streaked out on LB agar 
containing 50 µg/mL hygromycin and incubated at 37°C for 2–3 d. Single colonies were inoculated 
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into Middlebrook 7H9 containing 50 µg/mL hygromycin and incubated for ~48 hr at 37°C. The cells 
were then back diluted and added to the B04A microfluidic perfusion plate (CellASIC) during expo-
nential phase. Plates were loaded with medium pre- warmed to 37°C. Cells were loaded into the plate, 
which was incubated at 37°C, without shaking, for 30 min before imaging. Medium was exchanged 
using the ONIX microfluidic platform (CellASIC). In the case where cells were stained with RADA, a 
TAMRA- based fluorescent d- amino acid (Tocris Bioscience), 1 µM RADA was added to the culture 
upon back dilution. If the cells were not stained with RADA, Alexa Fluor 647 NHS succinimidyl ester 
(Thermo Fisher Scientific) was added to the media as an occlusion dye (it is not cell wall permeable 
and thus can be used to track the cells). Cells were perfused with Middlebrook 7H9 medium for 5 min 
and then hyperosmotically shocked with 7H9 + 3 M sorbitol for 10 min.
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